3.6.12 \(\int \frac {(d x)^{3/2}}{a^2+2 a b x^2+b^2 x^4} \, dx\)

Optimal. Leaf size=281 \[ -\frac {d^{3/2} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}-\frac {d^{3/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 281, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {28, 288, 329, 211, 1165, 628, 1162, 617, 204} \begin {gather*} -\frac {d^{3/2} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}-\frac {d^{3/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d*x)^(3/2)/(a^2 + 2*a*b*x^2 + b^2*x^4),x]

[Out]

-(d*Sqrt[d*x])/(2*b*(a + b*x^2)) - (d^(3/2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt
[2]*a^(3/4)*b^(5/4)) + (d^(3/2)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^(3/4)*
b^(5/4)) - (d^(3/2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*Sqrt[2]*a
^(3/4)*b^(5/4)) + (d^(3/2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*Sq
rt[2]*a^(3/4)*b^(5/4))

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {(d x)^{3/2}}{a^2+2 a b x^2+b^2 x^4} \, dx &=b^2 \int \frac {(d x)^{3/2}}{\left (a b+b^2 x^2\right )^2} \, dx\\ &=-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}+\frac {1}{4} d^2 \int \frac {1}{\sqrt {d x} \left (a b+b^2 x^2\right )} \, dx\\ &=-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}+\frac {1}{2} d \operatorname {Subst}\left (\int \frac {1}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )\\ &=-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}+\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a} d-\sqrt {b} x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{4 \sqrt {a}}+\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a} d+\sqrt {b} x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{4 \sqrt {a}}\\ &=-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}-\frac {d^{3/2} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {d x}\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}-\frac {d^{3/2} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {d x}\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^2 \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {d x}\right )}{8 \sqrt {a} b^{3/2}}+\frac {d^2 \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {d x}\right )}{8 \sqrt {a} b^{3/2}}\\ &=-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}-\frac {d^{3/2} \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}-\frac {d^{3/2} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}\\ &=-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}-\frac {d^{3/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}-\frac {d^{3/2} \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{3/4} b^{5/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 210, normalized size = 0.75 \begin {gather*} \frac {(d x)^{3/2} \left (-\frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{a^{3/4}}+\frac {\sqrt {2} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{a^{3/4}}-\frac {2 \sqrt {2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{a^{3/4}}+\frac {2 \sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{a^{3/4}}-\frac {8 \sqrt [4]{b} \sqrt {x}}{a+b x^2}\right )}{16 b^{5/4} x^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^(3/2)/(a^2 + 2*a*b*x^2 + b^2*x^4),x]

[Out]

((d*x)^(3/2)*((-8*b^(1/4)*Sqrt[x])/(a + b*x^2) - (2*Sqrt[2]*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/a^(
3/4) + (2*Sqrt[2]*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/a^(3/4) - (Sqrt[2]*Log[Sqrt[a] - Sqrt[2]*a^(1
/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/a^(3/4) + (Sqrt[2]*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x
])/a^(3/4)))/(16*b^(5/4)*x^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.47, size = 183, normalized size = 0.65 \begin {gather*} -\frac {d^{3/2} \tan ^{-1}\left (\frac {\frac {\sqrt [4]{a} \sqrt {d}}{\sqrt {2} \sqrt [4]{b}}-\frac {\sqrt [4]{b} \sqrt {d} x}{\sqrt {2} \sqrt [4]{a}}}{\sqrt {d x}}\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}+\frac {d^{3/2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}}{\sqrt {a} d+\sqrt {b} d x}\right )}{4 \sqrt {2} a^{3/4} b^{5/4}}-\frac {d^3 \sqrt {d x}}{2 b \left (a d^2+b d^2 x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(d*x)^(3/2)/(a^2 + 2*a*b*x^2 + b^2*x^4),x]

[Out]

-1/2*(d^3*Sqrt[d*x])/(b*(a*d^2 + b*d^2*x^2)) - (d^(3/2)*ArcTan[((a^(1/4)*Sqrt[d])/(Sqrt[2]*b^(1/4)) - (b^(1/4)
*Sqrt[d]*x)/(Sqrt[2]*a^(1/4)))/Sqrt[d*x]])/(4*Sqrt[2]*a^(3/4)*b^(5/4)) + (d^(3/2)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(
1/4)*Sqrt[d]*Sqrt[d*x])/(Sqrt[a]*d + Sqrt[b]*d*x)])/(4*Sqrt[2]*a^(3/4)*b^(5/4))

________________________________________________________________________________________

fricas [A]  time = 1.19, size = 234, normalized size = 0.83 \begin {gather*} \frac {4 \, {\left (b^{2} x^{2} + a b\right )} \left (-\frac {d^{6}}{a^{3} b^{5}}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {d x} a^{2} b^{4} d \left (-\frac {d^{6}}{a^{3} b^{5}}\right )^{\frac {3}{4}} - \sqrt {a^{2} b^{2} \sqrt {-\frac {d^{6}}{a^{3} b^{5}}} + d^{3} x} a^{2} b^{4} \left (-\frac {d^{6}}{a^{3} b^{5}}\right )^{\frac {3}{4}}}{d^{6}}\right ) + {\left (b^{2} x^{2} + a b\right )} \left (-\frac {d^{6}}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (a b \left (-\frac {d^{6}}{a^{3} b^{5}}\right )^{\frac {1}{4}} + \sqrt {d x} d\right ) - {\left (b^{2} x^{2} + a b\right )} \left (-\frac {d^{6}}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (-a b \left (-\frac {d^{6}}{a^{3} b^{5}}\right )^{\frac {1}{4}} + \sqrt {d x} d\right ) - 4 \, \sqrt {d x} d}{8 \, {\left (b^{2} x^{2} + a b\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="fricas")

[Out]

1/8*(4*(b^2*x^2 + a*b)*(-d^6/(a^3*b^5))^(1/4)*arctan(-(sqrt(d*x)*a^2*b^4*d*(-d^6/(a^3*b^5))^(3/4) - sqrt(a^2*b
^2*sqrt(-d^6/(a^3*b^5)) + d^3*x)*a^2*b^4*(-d^6/(a^3*b^5))^(3/4))/d^6) + (b^2*x^2 + a*b)*(-d^6/(a^3*b^5))^(1/4)
*log(a*b*(-d^6/(a^3*b^5))^(1/4) + sqrt(d*x)*d) - (b^2*x^2 + a*b)*(-d^6/(a^3*b^5))^(1/4)*log(-a*b*(-d^6/(a^3*b^
5))^(1/4) + sqrt(d*x)*d) - 4*sqrt(d*x)*d)/(b^2*x^2 + a*b)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 261, normalized size = 0.93 \begin {gather*} -\frac {1}{16} \, d {\left (\frac {8 \, \sqrt {d x} d^{2}}{{\left (b d^{2} x^{2} + a d^{2}\right )} b} - \frac {2 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a b^{2}} - \frac {2 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a b^{2}} - \frac {\sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a b^{2}} + \frac {\sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a b^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="giac")

[Out]

-1/16*d*(8*sqrt(d*x)*d^2/((b*d^2*x^2 + a*d^2)*b) - 2*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*
d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a*b^2) - 2*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2
)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a*b^2) - sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x + sqrt(2)*(a*d^2
/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a*b^2) + sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqr
t(d*x) + sqrt(a*d^2/b))/(a*b^2))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 212, normalized size = 0.75 \begin {gather*} -\frac {\sqrt {d x}\, d^{3}}{2 \left (b \,d^{2} x^{2}+d^{2} a \right ) b}+\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )}{8 a b}+\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )}{8 a b}+\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, d \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )}{16 a b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2),x)

[Out]

-1/2*d^3/b*(d*x)^(1/2)/(b*d^2*x^2+a*d^2)+1/16*d/b*(a/b*d^2)^(1/4)/a*2^(1/2)*ln((d*x+(a/b*d^2)^(1/4)*(d*x)^(1/2
)*2^(1/2)+(a/b*d^2)^(1/2))/(d*x-(a/b*d^2)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a/b*d^2)^(1/2)))+1/8*d/b*(a/b*d^2)^(1/4)/
a*2^(1/2)*arctan(2^(1/2)/(a/b*d^2)^(1/4)*(d*x)^(1/2)+1)+1/8*d/b*(a/b*d^2)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/b*
d^2)^(1/4)*(d*x)^(1/2)-1)

________________________________________________________________________________________

maxima [A]  time = 3.06, size = 265, normalized size = 0.94 \begin {gather*} -\frac {\frac {8 \, \sqrt {d x} d^{4}}{b^{2} d^{2} x^{2} + a b d^{2}} - \frac {\frac {\sqrt {2} d^{4} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} d^{4} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}} b^{\frac {1}{4}}} + \frac {2 \, \sqrt {2} d^{3} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a}} + \frac {2 \, \sqrt {2} d^{3} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a}}}{b}}{16 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="maxima")

[Out]

-1/16*(8*sqrt(d*x)*d^4/(b^2*d^2*x^2 + a*b*d^2) - (sqrt(2)*d^4*log(sqrt(b)*d*x + sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x
)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(3/4)*b^(1/4)) - sqrt(2)*d^4*log(sqrt(b)*d*x - sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)
*b^(1/4) + sqrt(a)*d)/((a*d^2)^(3/4)*b^(1/4)) + 2*sqrt(2)*d^3*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4
) + 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(a)) + 2*sqrt(2)*d^3*arctan(-1/
2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) - 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)
*d)*sqrt(a)))/b)/d

________________________________________________________________________________________

mupad [B]  time = 4.35, size = 92, normalized size = 0.33 \begin {gather*} -\frac {d^{3/2}\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{4\,{\left (-a\right )}^{3/4}\,b^{5/4}}-\frac {d^{3/2}\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{4\,{\left (-a\right )}^{3/4}\,b^{5/4}}-\frac {d^3\,\sqrt {d\,x}}{2\,b\,\left (b\,d^2\,x^2+a\,d^2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(3/2)/(a^2 + b^2*x^4 + 2*a*b*x^2),x)

[Out]

- (d^(3/2)*atan((b^(1/4)*(d*x)^(1/2))/((-a)^(1/4)*d^(1/2))))/(4*(-a)^(3/4)*b^(5/4)) - (d^(3/2)*atanh((b^(1/4)*
(d*x)^(1/2))/((-a)^(1/4)*d^(1/2))))/(4*(-a)^(3/4)*b^(5/4)) - (d^3*(d*x)^(1/2))/(2*b*(a*d^2 + b*d^2*x^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d x\right )^{\frac {3}{2}}}{\left (a + b x^{2}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**(3/2)/(b**2*x**4+2*a*b*x**2+a**2),x)

[Out]

Integral((d*x)**(3/2)/(a + b*x**2)**2, x)

________________________________________________________________________________________